A meeting of the Santa Monica Community College District Planning and Advisory Council (DPAC) is scheduled to be held on Wednesday, **April 28, 2010 at 3 p.m.** at Santa Monica College, Drescher Hall Room 300-E (the Loft), 1900 Pico Boulevard, Santa Monica, California.

I. **Call to Order**

II. **Members**

- Randal Lawson, Administration, Chair Designee
- Jeff Shimizu, Administration Representative
- Erica LeBlanc, Management Association President
- Al Vasquez, Management Association Representative
- Eric Oifer, Academic Senate President, Vice-Chair
- Richard Tahvildaran-Jesswein, Academic Senate Representative
- Mitra Moassessi, Faculty Association President
- Sandra Burnett, Faculty Association Representative
- Bernie Rosenloecher, CSEA President
- Leroy Lauer, CSEA Representative
- Cameron Henton, Associated Students President
- Rochelle Watkins, Associated Students Representative

III. **Review of Minutes:** March 24, 2010

IV. **Reports**

A. **Planning Subcommittees**

- Budget Planning: Bob Isomoto and Howard Stahl, Co-Chairs
- College Services Planning: Mike Tuitasi and Rochelle Watkins, Co-Chairs
- Facilities Planning: J.C. Keurjian and Lee Peterson, Co-Chairs
- Human Resources Planning: Sherri Lee Lewis and Patricia Burson, Co-Chairs
- Technology Planning: Bob Dammer and Simon Balm, Co-Chairs

B. **Academic Senate Joint Committees**

- Curriculum: Guido Davis Del Piccolo, Chair and Georgia Lorenz, Vice-Chair
- Program Review: Mary Colavito, Chair and Katharine Muller, Vice-Chair
- Student Affairs: Greg Brookins, Chair, and Kiersten Elliott, Vice-Chair
- Student Learning Outcomes: Christine Schultz and Lesley Kawaguchi, Co-Chairs, and Caroline Sheldon, Vice-Chair
IV. Reports (continued)

C. Associated Students

D. ACUPCC (American College and University President's Climate Commitment) Task Force

V. Agenda

Public Comments

Individuals may address the District Planning and Advisory Council (DPAC) concerning any subject that lies within the jurisdiction of DPAC by submitting an information card with name and topic on which comment is to be made. The Chair reserves the right to limit the time for each speaker.

A. Budget Planning Subcommittee Recommendation

The following recommendation was approved unanimously by the Budget Planning Subcommittee (Ayes-12, Noes-0) and submitted to DPAC for consideration:

The Budget Planning Subcommittee recommends to DPAC that Fiscal Services investigate and apply for the reimbursement of pre-Medicare retiree healthcare premiums as allowed under the recently passed healthcare legislation (the Patient Protection and Affordable Care Act).

B. Acceptance of 2007-2008 Greenhouse Gas Inventory (report attached)

C. Administrative Regulation on Medical Marijuana

Administrative Regulation 2430

In accordance with federal law and Board Policy Section 2430, possession and/or use of medical marijuana is prohibited in all property owned or controlled by the Santa Monica Community College District.

(see attached staff report)

D. Schedule of Classes Transition Plan, approved by DPAC on November 25, 2009 as follows:

DPAC recommends that the District develop a plan by Fall 2010 to transition the college from relying heavily and primarily on the printed schedule of classes to alternative delivery methods.

E. DPAC Planning Subcommittee Evaluations: College Services, Human Resources

F. Formation of Infrastructure Subcommittee

(comprising representatives of Facilities and Technology Planning Subcommittees)

G. Discussion: Zimride (Rideshare Program)

VI. Adjournment

Meeting schedule through June, 2010 (second and fourth Wednesdays each month at 3 p.m.)

May 12, 26
June 9, 23

VII. Council of Presidents Meeting

The Council of Presidents will set the agenda for the May 12, 2010 DPAC meeting.
Santa Monica College
2007-2008 Greenhouse Gas Inventory

Summary
After one year of data gathering and analysis using the Cool Air Clean Planet Carbon Calculator, Santa Monica College has completed its first inventory of greenhouse gas emissions. These emissions amount to approximately 30 thousand metric tons of carbon-dioxide equivalent (MT CO2e) per year, or 1.2 MT CO2e per full-time-equivalent student. Illustrating SMC’s commitment to sustainability, this compares very favorably to a national average among peer institutions which is more than twice as great—3.1 MT CO2e per FTE student. However, when measured against the physical size of college facilities, SMC’s carbon footprint is actually slightly higher than its peer average of 28 MT CO2e per thousand square feet. Not surprisingly, the inventory identified Santa Monica College’s two largest emissions sources as commuting and electricity usage. This information will be useful in guiding our institutional Climate Action Planning.

Background
In January 2008, SMC President Dr. Chui L. Tsang joined hundreds of his colleagues across the United States in signing the American College and University Presidents’ Climate Commitment (ACUPCC). Signatories of the ACUPCC pledge to guide their institutions toward climate neutrality by making an inventory of greenhouse gases, such as carbon dioxide and methane, and then working to mitigate those emissions as part of global society’s efforts to re-stabilize the planet’s climate system.

As an initial step toward honoring that commitment, SMC formed an ACUPCC Sustainability Task Force to complete the college’s first greenhouse gas inventory and begin the process of developing a Climate Action Plan (CAP). This report marks the conclusion of the initial inventory, laying a foundation for planning and measuring progress toward the goal of climate neutrality in the years ahead.

What is included in the inventory?
This report contains figures for two years: a baseline year defined as the 2005-06 fiscal year ending June 30, 2006, and the 2007-08 fiscal year ending June 30, 2008. Emissions are organized under the headings of Scope 1, Scope 2, and Scope 3.

Scope 1 emissions are those coming directly from property owned and operated by the college. Since SMC does not have an agricultural program or a cogeneration plant, its Scope 1 emissions are limited to its fleet of cars, trucks, buses, and vans, plus natural-gas lab, and heating systems.
Scope 2 emissions are defined as those resulting from contracted utilities’ generation of electricity consumed by the college—SMC’s second-largest source of emissions.

Scope 3 is something of a catch-all category incorporating every other source that can be tied to the college’s operations. The definition of Scope 3 could be stretched to include waste hauling or even the embedded carbon in all the products delivered to and used by the college. The ACUPCC, however, directs its signatories to measure only two types of Scope 3 emission sources: (1) college-funded travel to conferences and other events in vehicles not part of the campus fleet, such as commercial airlines, rental cars, and reimbursed personal mileage; and (2) the daily commuting to and from campus by students, faculty, and staff.

Santa Monica College Emissions
Table 1 summarizes SMC’s greenhouse gas emissions by source in metric tons of carbon-dioxide equivalent (MT CO2e). The college experienced a modest six-percent increase in total emissions during the two-year period. While having only a modest impact on total emissions, introduction of a natural-gas shuttle bus did reduce the college fleet’s emissions by more than 13 percent.

Table 1. Santa Monica College Greenhouse Gas Emissions by Source (MT CO2e)

<table>
<thead>
<tr>
<th>Emissions Source</th>
<th>FYE 2006</th>
<th>FYE 2008</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student commuting</td>
<td>19,973</td>
<td>21,541</td>
<td>7.9%</td>
</tr>
<tr>
<td>Electricity*</td>
<td>5,697</td>
<td>5,781</td>
<td>1.5%</td>
</tr>
<tr>
<td>Employee commuting</td>
<td>1,924</td>
<td>2,076</td>
<td>7.9%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1,337</td>
<td>1,366</td>
<td>2.2%</td>
</tr>
<tr>
<td>Campus Fleet</td>
<td>220</td>
<td>190</td>
<td>-13.6%</td>
</tr>
<tr>
<td>Air and other college-funded travel</td>
<td>195</td>
<td>187</td>
<td>-4.1%</td>
</tr>
<tr>
<td>Total from all sources</td>
<td>29,346</td>
<td>31,141</td>
<td>!C11 Is Not In Table</td>
</tr>
</tbody>
</table>

Table 2 compares SMC’s total emissions over the two fiscal years by a number of common measures reflecting the size of the college. According to the data, SMC’s emissions increased by eight percent and by three percent, respectively, on a budget-dollar and a building-square-footage basis. Per-student emissions, however, were virtually unchanged between the two years.
Table 2 also presents comparisons of SMC’s emissions to the average figures reported by 111 peer ACUPCC institutions classified as Associate’s and Tribal Colleges.¹ When measured on a per-student basis, SMC’s emissions are low, less than half of the national average. However, when based on total built space, SMC’s emissions are slightly higher than its peers.

Table 2. SMC Emissions by Select Metrics

<table>
<thead>
<tr>
<th>Emissions Source</th>
<th>FYE 2006</th>
<th>FYE 2008</th>
<th>Peers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Emissions (MT CO2e)</td>
<td>29,346</td>
<td>31,141</td>
<td>--</td>
</tr>
<tr>
<td>Operating Budget (millions of $2005)</td>
<td>133.9</td>
<td>132.2</td>
<td>--</td>
</tr>
<tr>
<td>Student Population (FTEs)*</td>
<td>24,776</td>
<td>26,170</td>
<td>--</td>
</tr>
<tr>
<td>Building Space (thousands of sq. ft.)</td>
<td>1,015</td>
<td>1,045</td>
<td>--</td>
</tr>
<tr>
<td>Emissions per $100k budget</td>
<td>21.9</td>
<td>23.6</td>
<td>--</td>
</tr>
<tr>
<td>Emissions per FTE student</td>
<td>1.2</td>
<td>1.2</td>
<td>3.1</td>
</tr>
<tr>
<td>Emissions per thousands of sq. ft.</td>
<td>28.9</td>
<td>29.8</td>
<td>28.0</td>
</tr>
</tbody>
</table>

* see appendix on methodology for explanation of how student FTEs were estimated for this report

Figure 1 divides the college’s total emissions by source. Consistent with our peers, SMC’s Scope 1 emissions consist mostly of the stationary combustion of natural gas and make only a small contribution to the overall total. Moreover, Santa Monica has the advantage of a moderate climate all year long, limiting the need for winter heating. This is reflected in SMC’s Scope-1 emission of just 1.5 MT CO2e per thousand square feet, approximately one-third of the average among national peers (4.0 MT CO2e).

Similarly, SMC’s Scope 2 emissions, from purchased electricity, of 5.0 MT CO2e per thousand square feet is only about half the national average (9.4 MT CO2e). Nonetheless, SMC’s purchased electricity accounts for a significant share of its total emissions. Furthermore, energy demands of the information age, in addition to a growing physical campus means that energy usage will undoubted increase in the near future and that energy efficiency and renewable generation will be an important component of any future progress toward climate neutrality.

Figure 1 clearly illustrates that Scope 3 emissions associated with student (68%) and employee (7%) commuting account for the vast majority of SMC’s total carbon footprint. In fact, three-quarters of the college’s emissions stem from the daily commute. This doesn’t make SMC extraordinary; our community-college peers across the country likewise report more emissions from commuting than any other source. Therefore, it is impossible to envision making major progress toward climate neutrality without significant changes to our

commuting behavior. In fact, even modest changes to those habits would yield sizable changes to SMC’s overall emissions. For example, according to recent surveys,\(^2\) 67 percent of employee commutes and 51 percent of student commutes are made by solo automobile trips. If both those figures were reduced by 15 percentage points, with five percent each shifted to carpool, bus, and walking/bicycling, SMC’s annual emissions would be reduced by nearly 3 MT CO2e, a ten-percent reduction from current levels.

![Figure 1. Emissions by Source](image)

Conclusion

As SMC moves forward toward climate neutrality, our biggest and most immediate progress will be made through programs targeting energy usage and generation such as efficiency, conservation, and solar. This will provide SMC with economic gains as well as carbon footprint reductions. However, the long term goal of climate neutrality will necessarily require the development and implementation of innovative and aggressive transportation initiatives aimed at reducing our automotive trips to and from the college. While SMC’s options may be limited, any shift toward alternative transportation such as carpools, walking, bicycling, mass transit, telecommuting, and flex scheduling could yield significant and meaningful results.

The ACUPCC Sustainability Task Force is currently compiling a data collection resource guide in hopes of improving access to information. Future inventories and other college facility planning could greatly benefit from improved access and management of climate related data such as utility usage. Improvements in data access and collection should be a priority for all future GHG Inventory committees. Additional considerations for future inventories include: utilizing service learning or developing a practicum class associated with the inventory, incorporating students into the AQMD survey process (similar to UCLA) or developing a more institutionalized student transportation survey, and broadening the definition of Scope 3 to possibly include waste, water, chemicals, purchasing, and food.

\(^2\) These surveys are discussed in the methodological appendix included with this report.
The next requirement of the ACUPCC is the completion of a Climate Action Plan (CAP), which includes setting a date for climate neutrality. The Task Force plans to approach the planning process in a holistic way so that connections between water, waste, food, purchasing, events, education and climate change can be made and measured. The CAP is scheduled to be completed during the 2010-2011 academic year.

Questions and comments regarding this greenhouse gas inventory report or to get involved with the Climate Action Plan, please contact the co-chairs of the college’s ACUPCC Sustainability Task Force:

- Genevieve Bertone, Project Manager for Sustainability
 310.434.3911
 bertone_genevieve@smc.edu
- Pete Morris, Geography professor
 310.434.8654
 morris_pete@smc.edu

Special thanks to the entire team of SMC faculty, staff, and students who volunteered their time to help compile the necessary data and complete this inventory. In alphabetical order they include: Chris Bonvenuto, Madeline Brodie, Harvey Eder, Amber Katherine, JC Keurjian, Dana Kleifeld, Natasha Gorodnitsky, Keith Graziadei, Lee Peterson, George Prather, Cameron Quinn, Al Vasquez, the SMC District Planning and Advisory Council, and Sustainable Works.
Appendix: Methodology

To estimate Santa Monica College’s greenhouse-gas emissions, for fiscal years ending June 2006 and June 2008, we used the spreadsheet-based calculator developed by Clean Air–Cool Planet (CA-CP), a non-profit organization based in New Hampshire. CA-CP’s Campus Carbon Calculator (v6.0) is widely used by colleges and universities across the United States, including many of Santa Monica College’s peers in California. Based on the methodological standards developed by the Intergovernmental Panel on Climate Change and the GHG Protocol Initiative, the CA-CP is, in fact, the recommended calculator for the ACUPCC.

Scope 1 emissions are “direct emissions from sources that are owned and/or controlled” by the college. Lacking an agricultural program, SMC’s Scope 1 emissions are limited to two areas: the college’s fleet of gasoline- and natural-gas–burning vehicles, and the combustion of natural gas for heating systems and other applications.

All Scope 1 data collected are from FYE 2006 and 2008. Natural gas data was gathered via facilities utility tracking and then verified using provider spreadsheets. In addition, SMC bus fleet gasoline data was gathered via spreadsheets obtained from the SMC facilities department. Gasoline data for the SMC Police department was calculated using fuel receipts from the “SMC PD Fuel Card Use Log”. Finally, gasoline fuel consumption for the SMC Grounds department was calculated using fuel receipts provided by the Grounds department.

Scope 2 emissions are “indirect emissions from sources that are neither owned nor operated” by the college, “but whose products are directly linked to on-campus energy consumption.” Since SMC does not purchase steam or chilled water, Scope 2 consists entirely of purchased electricity. Emissions estimates for both Scope 1 and Scope 2 are a relatively simple exercise of multiplying SMC’s energy-consumption data (natural gas, gasoline, diesel, electricity) by the standard Emissions factors that are built into the CA-CP.

SMC has two primary energy providers, Constellation and Southern California Edison (SCE). Electricity usage data was gathered via SMC facilities utility tracking and partially verified from provider data (Constellation). The committee was unable to obtain SCE provider data to verify SMC’s in-house data tracking accuracy.

Also included in this scope is college financed travel, which was obtained from the Fiscal Services department using reimbursement forms.

Scope 3 emissions are the least direct. These come from “sources that are neither owned nor operated” by the college, but are “either directly financed or are otherwise linked to the campus via influence or encouragement.” There is a wide range of activities that could fall under Scope 3, including “upstream” emissions in the form of greenhouse-gases that are embedded in products the college consumes (e.g., the emissions associated with producing and delivering the paper the college uses) and “downstream” emissions linked to disposal of the college’s waste. For this initial inventory, we limited our attention to only those Scope 3 emissions that signatories are directed to measure: emissions related to
directly financed outsourced transportation (reimbursed transportation, air or other, by SMC faculty, staff, and students) and emissions related to daily commuting to and from campus. By definition, Scope 3 also includes emissions implicit in the transportation and distribution losses associated with purchased energy (i.e., Scope 2), and when reported by “Scope”, that is how we have accounted for them. When discussing the sources of SMC’s emissions for our own internal planning purposes, however, these transportation and distribution losses are combined with Scope 2 as our “Electricity” footprint.

The commuting emissions that fall under Scope 3 are the most challenging source to inventory. The basic methodology built into the calculator is straightforward:

\[
\text{Commuting emissions} = \text{POP} \times \text{DAYS} \times \text{WEEKS} \times \text{MILES} \times \text{EF}
\]

- **POP** = number of people in category (students, faculty, staff)
- **DAYS** = average number of days per week commuting
- **WEEKS** = average number of weeks per year commuting
- **MILES** = average length of commuting round trip
- **EF** = emissions factor based on the type of vehicle (car, bus, etc.)

The challenge lies in estimating each of these quantities for both students and employees, which requires a mix of existing data, special surveys, and assumptions.

Population (POP) For employees, we simply used the official head counts reported to the California Community Colleges Chancellor’s Office in Fall 2005 and Fall 2007. The population counts of students, however, are more complicated, given the presence not only of part-time students but also non-credit and winter and summer session students. While the Chancellor’s Office has its own definition of an “FTES”, this concept isn’t entirely comparable to a more generic sense of a full-time-equivalent (FTE) student used by peer institutions across the country.

For this inventory, we define an FTE student as a student enrolled in at least 12 units for both the Spring and Fall semesters, equivalent to 30 weeks of instruction. With that conceptual definition in mind, we derived our FTE student counts as follows:

1. Calculate the average of the official Fall and Spring semester head counts reported to the Chancellor’s office, treating the non-credit students as part-time.
2. Inflate these numbers by the summer and winter sessions’ combined contribution to SMC’s FTES for the year. While FTES isn’t the same thing as FTE, it’s nonetheless a reasonable indicator of the total student volume SMC serves term by term; roughly 20% of the college’s total annual FTES come in these two sessions.
3. Enter these annualized numbers for SMC’s full-time and part-time populations into the CA-CP.

Using our baseline year of 2005–06 as an example, SMC had an official headcount of 9,673 full-time students and 22,125 part-time and non-credit students in Fall 2005. For Spring 2006, these numbers were 8,413 and 21,884. Averaging together the Fall and Spring numbers, and then dividing each by .809—because Fall and Spring together contributed 80.9% of the year’s total FTES—yields annually adjusted numbers of 11,177
full-time students and 27,197 part-time students. Since the CA-CP treats each part-time student as equivalent to one-half of a full-time student, this translates into an annualized FTE for 2005–06 of 24,776. This is only marginally different from the 24,454 FTES Santa Monica College reported to the Chancellor’s office that year.

Days per week commuting to/from SMC (DAYS). The CA-CP uses one value for faculty, one value for other employees, and another value for students. Lacking firm data, we entered values based on informed assumptions, after consulting various campus leaders. For faculty, we assumed an average weekly travel frequency of 2.5 days, reflecting not only the relatively standard 3-day or 4-day teaching schedule among full-time faculty but also the high proportion of part-time instructors. For classified staff and administrators, we assumed an average weekly travel frequency of 4.5 days—a standard five-day week adjusted downward to account for those who work on a part-time or compressed-schedule basis. Importantly, when these two values of 2.5 and 4.5 are averaged, weighted to reflect a faculty: staff ratio of 3:1, this yields an overall average of 3.0 days per week for all employees—exactly the figure reported by SMC’s annual commuting surveys conducted by Risk Management for the South Coast Air Quality Management District.

Given the standard Monday–Thursday class schedule at SMC, we assumed a value of 4.0 days per week for a FTE student commuting frequency. The CA-CP simply assumes that part-time students have half the commuting impact of their full-time classmates.

Weeks per year commuting to/from SMC (WEEKS). By our definition, an FTE student receives 30 weeks of instruction at SMC—the two 15-week semesters. We chose not to add additional weeks to account for final-exam periods, figuring that holidays and periodic absences from class would compensate. For the different employee groups, we assumed 38 weeks per year for faculty—the same 30 weeks during Fall and Spring plus additional weeks for exams and one of the two six-week winter or summer sessions. For classified staff and administration, we assumed an average 48-week work year.

Miles per trip commuting to/from SMC (MILES). We used the college’s residential ZIP Code data for the years 2005–06 to 2007–08 to estimate average one-way commuting distance for SMC students and employees. Using the online driving-directions tool at Google Maps, we estimated the distance between each ZIP Code and the SMC main campus address, and then calculated an average figure for faculty, classified staff and administrators, and for students, weighted by the number residing in each ZIP Code. This resulted in approximate one-way distances of 11 miles for students, 12.5 miles for staff and administrators, and 14 miles for faculty, values which we entered into the CA-CP for both years and for all commuting modes, since we don’t have separate data for drivers, carpoolers, and bus riders. The only other complication is that, while very few individuals were missing a valid ZIP Code in SMC’s database, many had ZIP Codes located an unreasonable commuting distance from the college. In the absence of an obvious threshold, we chose to exclude any ZIP Code estimated to be more than 100 miles from SMC as “Out of the Area” and thus not included into the average per-person distance calculations. This choice excludes about 3% of the students and faculty, and 1.5% of the classified staff and administrators.
Emissions Factor (EF). Multiplying all of the above yields estimates of the total annual mileage traveled by commuters to and from SMC, whether they be students, faculty, or staff and administration. To translate these miles into greenhouse-gas emissions, the CA-CP includes standard assumptions regarding fuel consumption for different transportation modes, including automobiles, carpools, and buses. To apply these “emissions factors” in the appropriate mix, we entered survey-derived data for each of the two years (see Table A1 below). The employee data is taken from the annual SCAQMD surveys; the student data is taken from special surveys conducted for the environmental audit in 2006 and for this greenhouse-gas inventory in 2009.

Table A1. SMC Student and Employee Commuting Trips, by mode

<table>
<thead>
<tr>
<th>Commuting Mode</th>
<th>Students Spring 2006</th>
<th>Students Spring 2009*</th>
<th>Employees Spring 2006</th>
<th>Employees Spring 2008</th>
<th>Relative EF per mile (driving=1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Alone</td>
<td>49%</td>
<td>47%</td>
<td>59%</td>
<td>67%</td>
<td>1.0</td>
</tr>
<tr>
<td>Carpool</td>
<td>15%</td>
<td>17%</td>
<td>20%</td>
<td>16%</td>
<td>0.5</td>
</tr>
<tr>
<td>Mass Transit (Bus)</td>
<td>24%</td>
<td>26%</td>
<td>11%</td>
<td>9%</td>
<td>0.6</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>--</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>--</td>
</tr>
<tr>
<td>Bicycle</td>
<td>4%</td>
<td>3%</td>
<td>3%</td>
<td>2%</td>
<td>0.0</td>
</tr>
<tr>
<td>Walking</td>
<td>7%</td>
<td>6%</td>
<td>6%</td>
<td>5%</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* used for FYE 2008 calculations